Search the World of Chemistry

×

Tag: Laws Of Chemical Combinations


Law of Reciprocal Proportions by Jeremias Richter

The law of reciprocal proportions is also known as the law of equivalent proportions or the law of permanent ratios. It along with the law of definite and multiple proportions is one of the fundamental laws of stoichiometry. The law was proposed by German chemist Jeremias Richter in 1791. The is similar to the law of multiple proportions.

4 min read

Law of Multiple Proportions by Dalton

The law of multiple proportions is one of the basic laws studied in chemistry. It along with the law of definite proportions has contributed to the understanding of stoichiometry in early days. The law was proposed by English chemist John Dalton in 1803, who is also known for his law of partial pressures. Dalton published the law in his book New System of Chemical Philosophy (Vol 1).

4 min read

Law of Definite Proportions or Proust's Law

The law of definite proportions is also known as the law of definite composition or the law of constant composition, or simply Proust’s law. It is one of the basic laws in chemistry and a part of the laws of chemical combinations. In 1794, French chemist Joseph Proust proposed this law. That time the knowledge of chemical compound was not fully evolved, and he was opposed by many well-known chemists of that time. But later they were proven wrong. The law of definite proportions was later extended by John Dalton when Dalton proposed the law of multiple proportions.

7 min read

Law of Conservation of Matter

The law of conservation of matter is a fundamental law in science. It is also known as the law of conservation of mass. The later is used in physics while the former in chemistry. It is one of the laws of chemical combinations in chemistry. The law has huge applications in chemistry, physics, and engineering. In a closed system, the exchange of matter is restricted across its boundaries. So, there is no matter entering the system or leaving the system. Thus, the flow of matter in and out of the system is zero. These statements are true only for a closed system with no nuclear change. We can apply the law to systems which are subjected to physical and chemical changes, not nuclear changes. This will be better understood as we go through the article.

6 min read

Join the Newsletter

Subscribe to get latest content in your inbox.

newsletter

We won’t send you spam.