Search the World of Chemistry

×

Molar Mass Constant

The molar mass constant is a quantity similar to the atomic mass constant. The constant, as from the name, is related to the molar mass of carbon-12.

2 min read

Atomic Mass Constant

The atomic mass constant is used to define the atomic mass unit (or the unified atomic mass). It equals one atomic mass unit. The atomic mass unit is the standard unit used to quantify mass on the atomic scale. Also, the atomic mass unit, the unified mass unit, and the dalton are all synonymous units and are interchangeably used.

3 min read

Atomic Mass Unit (or Unified Mass Unit or dalton)

The atomic mass unit is also known as the unified mass unit or the dalton. It is a standard non-SI unit of mass. It is used to quantify mass on the atomic scale, for example, the mass of a proton, the mass of an electron, the mass of iron.

5 min read

Mass Number

The number of nucleons present in an atom is called mass number. Mass number, as from the name, is responsible for the mass of an atom or atomic mass. Since protons and neutrons are much heavier than electrons, the mass of an atom is estimated by the number of protons and the number of neutrons or in other words, mass number. Mass number is always a whole number because the number of protons and neutrons present in an atom is always a whole number.

13 min read

Atomic Mass

The Gold Book of the International Union of Pure and Applied Chemistry (IUPAC) defines atomic mass as “rest mass of an atom in its ground state”. In simple words, atomic mass is the mass of an atom of an element.

22 min read

Dalton’s Atomic Theory

Today, we know every matter around us is composed of atoms. But this fact was a mystery until the end of the 18th century when Dalton, an English chemist, proposed his atomic theory. Dalton’s atomic theory was the first scientific atomic theory based on his experiments and examinations of previous scientific works. Modern atomic theory is much different from what Dalton had proposed, but some of the ideas of the theory are still valid. Dalton’s theory provided a foundation for modern chemistry.

10 min read

Law of Reciprocal Proportions by Jeremias Richter

The law of reciprocal proportions is also known as the law of equivalent proportions or the law of permanent ratios. It along with the law of definite and multiple proportions is one of the fundamental laws of stoichiometry. The law was proposed by German chemist Jeremias Richter in 1791. The is similar to the law of multiple proportions.

4 min read

Law of Multiple Proportions by Dalton

The law of multiple proportions is one of the basic laws studied in chemistry. It along with the law of definite proportions has contributed to the understanding of stoichiometry in early days. The law was proposed by English chemist John Dalton in 1803, who is also known for his law of partial pressures. Dalton published the law in his book New System of Chemical Philosophy (Vol 1).

4 min read

Law of Definite Proportions or Proust's Law

The law of definite proportions is also known as the law of definite composition or the law of constant composition, or simply Proust’s law. It is one of the basic laws in chemistry and a part of the laws of chemical combinations. In 1794, French chemist Joseph Proust proposed this law. That time the knowledge of chemical compound was not fully evolved, and he was opposed by many well-known chemists of that time. But later they were proven wrong. The law of definite proportions was later extended by John Dalton when Dalton proposed the law of multiple proportions.

7 min read

Law of Conservation of Matter

The law of conservation of matter is a fundamental law in science. It is also known as the law of conservation of mass. The later is used in physics while the former in chemistry. It is one of the laws of chemical combinations in chemistry. The law has huge applications in chemistry, physics, and engineering. In a closed system, the exchange of matter is restricted across its boundaries. So, there is no matter entering the system or leaving the system. Thus, the flow of matter in and out of the system is zero. These statements are true only for a closed system with no nuclear change. We can apply the law to systems which are subjected to physical and chemical changes, not nuclear changes. This will be better understood as we go through the article.

6 min read

Join the Newsletter

Subscribe to get latest content in your inbox.

newsletter

We won’t send you spam.